Recent advances on open fluidic systems for biomedical applications: A review

last updated: 2019-01-31
ProjectComplexiTE :: publications list
TitleRecent advances on open fluidic systems for biomedical applications: A review
Publication TypePapers in Scientific Journals
Year of Publication2018
AuthorsOliveira N. M., Vilabril S., Oliveira M. B., Reis R. L., and Mano J. F.
Abstract

Microfluidics has become an important tool to engineer microenvironments with high precision, comprising devices and methods for controlling and manipulating fluids at the submillimeter scale. A specific branch of microfluidics comprises open fluidic systems, which is mainly characterized by displaying a higher air/liquid interface when compared with traditional closed-channel setups. The use of open channel systems has enabled the design of singular architectures in devices that are simple to fabricate and to clean. Enhanced functionality and accessibility for liquid handling are additional advantages inputted to technologies based on open fluidics. While benchmarked against closed fluidics approaches, the use of directly accessible channels decreases the risk of clogging and bubble-driven flow perturbation. In this review, we discuss the advantages of open fluidics systems when compared to their closed fluidics counterparts. Platforms are analyzed in two separated groups based on different confinement principles: wall-based physical confinement and wettability-contrast confinement. The physical confinement group comprises both open and traditional microfluidics; examples based on open channels with rectangular and triangular cross-section, suspended microfluidics, and the use of narrow edge of a solid surface for fluid confinement are addressed. The second group covers (super)hydrophilic/(super)hydrophobic patterned surfaces, and examples based on polymer-, textile- and paper-based microfluidic devices are explored. The technologies described in this review are critically discussed concerning devices' performance and versatility, manufacturing techniques and fluid transport/manipulation methods. A gather-up of recent biomedical applications of open fluidics devices is also presented.

JournalMaterials Science and Engineering C
Volume97
Pagination 851-863
Date Published2018-12-28
PublisherElsevier
ISSN0928-4931
DOI10.1038/s41598-018-33192-6
URLhttps://www.sciencedirect.com/science/article/pii/S0928493118304430
KeywordsFluid confinement, Lab on a chip, Microfluidics, Open fluidics, superhydrophilicity, superhydrophobicity
RightsopenAccess
Peer reviewedyes
Statuspublished

Back to top