Micellization and gelatinization in aqueous media of pH- and thermo-responsive amphiphilic ABC (PMMA82-b-PDMAEMA150-b-PNIPAM65) triblock copolymer synthesized by consecutive RAFT polymerization

last updated: 2017-06-29
ProjectLA ICVS/3Bs - 2015-2017 :: publications list
TitleMicellization and gelatinization in aqueous media of pH- and thermo-responsive amphiphilic ABC (PMMA82-b-PDMAEMA150-b-PNIPAM65) triblock copolymer synthesized by consecutive RAFT polymerization
Publication TypePapers in Scientific Journals
Year of Publication2017
AuthorsHuang Y., Yong P., Gao Y., Xu W., Lv Y., Yang L., Reis R. L., Pirraco R. P., and Chen J.
Abstract

The multi-stimuli-responsive amphiphilic ABC triblock copolymer of poly(methyl methacrylate)-block-poly[N,N-(dimethylamino) ethyl methacrylate]-block-poly(N-isopropylacrylamide) (PMMA-b-PDMAEMA-b-PNIPAM) was synthesized by sequential reversible addition–fragmentation chain transfer (RAFT) polymerizations. Due to the pH- and thermo-responsive blocks of PDMAEMA and thermo-responsive blocks of PNIPAM, the copolymer solution properties can be manipulated by changing the parameters such as temperature and pH, and it formed diverse nanostructures and had gel behavior in different conditions. In detail, when the pH was below 7.3, the pKa of DMAEMA, tertiary amino groups were protonated, the polymer micellar solution like weak gel changed into free-standing gel at around 40 °C even at a low concentration of 2 wt%. Further, the gel behavior and morphology of the system were studied by rheology, turbidimetry measurements, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. When the pH was above the pKa, the triblock copolymer self-assembled into diverse micellar structures including shell–core, corona–shell–core and shell–shell–core nanoparticles as the temperature increased, but no free-standing gelation. The two-step thermo-responsive behavior, corresponding to the different LCSTs of PNIPAM block and DMAEMA block, was evidenced by turbidity analysis. The assembled structures rapidly collapsed due to the enhanced hydrophobic interaction when the temperature further increased. Dynamic light scattering (DLS) was used to confirm the transitions.

JournalRsc Advances
Volume7
Pagination28711-28722
Date Published2017-05-30
PublisherRSC
ISSN2046-2069
DOI10.1039/C7RA04351A
KeywordsMicellization, RAFT, thermoresponsive
RightsopenAccess
Peer reviewedyes
Statuspublished

Back to top