The layer-by-layer (LbL) technique has been widely used to produce nanofilms for biomedical applications. Naturally occurring polymers such as ECM macromolecules are attractive candidates for LbL film preparation. In this study we assessed the build-up of type I collagen (Col1)/chondroitin sulfate (CS) or Col1/Heparin (HN) on polydimethylsiloxane (PDMS) substrates. The build-up was assessed by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Integrin-mediated cell adhesion was assessed by studying the cytoskeletal organization of mammalian primary cells (chondrocytes) seeded on different end layers and number of layers. Data generated from the QCM-D observations showed a consistent build-up of films with more adsorption in the case of Col1/HN. Col1/CS films were stable in media while Col1/HN were not. AFM analysis showed the layers were fibrillar in structure for both systems and between 20-30nm thick. The films promoted cell adhesion when compared to tissue culture plastic in serum free media with cycloheximide. Crosslinking of the films resulted in constrained cell spreading and a ruffled morphology. Finally beta1 integrin blocking antibodies prevented cell spreading, suggesting that cell adhesion and spreading was mediated mainly by interaction with the collagen fibrils. The ability to construct stable ECM-based films on PDMS has particular relevance in mechanobiology, microfluidics and other biomedical applications.
|