Title | Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage regeneration |
Publication Type | Conference Abstract -ISI Web of Science Indexed |
Year of Publication | 2012 |
Authors | Piai J. F., Martins A., Alves da Silva, ML, Reis R. L., Muniz E. C., and Neves N. M. |
Abstract | Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage regeneration
Juliana Francis Piai1,2,3, Albino Martins1,2, Marta Alves da Silva1,2, Rui L. Reis1,2, Edvani Curti Muniz3, Nuno M. Neves1,2
1 3B’s Research Group, University of Minho, Avepark, Zona Industrial da Gandra, S. Claudio do Barco, 4806-909 Guimarães, Portugal 2 ICVS/ 3B´s Associate Laboratory, Braga/ Guimarães, Portugal 3 Grupo de Materiais Poliméricos e Compósitos, GMPC - Departamento de Química- Universidade Estadual de Maringá - Av. Colombo 5790 - 87020-900, Maringá, Paraná, Brazil.
Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs). The immobilization was performed with 1-ethyl-3-(3-dimethyl- aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). Contact Angle, SEM, Optical Profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (HACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that HACs proliferated through the entire time course of the experiment in both types of scaffolds. SEM observations revealed that HACs maintained their typical morphology and produced extracellular matrix. Glycosaminoglycans quantification showed increased values over time. Quantitative-PCR of cartilage-related genes revealed over-expression of Aggrecan, Collagen type II, COMP and Sox9 on both types of NFMs tested, with higher values for PCL. In conclusion, CS immobilization in PCL NFM was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering. |
Journal | Journal of Tissue Engineering and Regenerative Medicine |
Volume | 6 |
Edition | SI |
Issue | Supplement 1 |
Pagination | 56-56 |
Date Published | 2012-09-01 |
Conference Location | Austria |
Keywords | cartilage tissue engineering, Chondroitin sulphate immobilization |
Rights | openAccess |
Peer reviewed | yes |
Status | published |